23 research outputs found

    Integrating ensemble species distribution modeling and statistical phylogeography to inform projections of climate change impacts on species distributions

    Get PDF
    Species distribution models (SDMs) are commonly used to forecast climate change impacts on species and ecosystems. These models, however, are subject to important assumptions and limitations. By integrating two independent but complementary methods, ensemble SDMs and statistical phylogeography, I was able to address key assumptions and create robust assessments of climate change impacts on species\u27 distributions while improving the conservation value of these projections. This approach was demonstrated using Rhodiola integrifolia, an alpine-arctic plant distributed at high elevations and latitudes throughout the North American cordillera. SDMs for R. integrifolia were fit to current and past climates using eight model algorithms, two threshold methods, and between one and three climate data sets (downscaled from general circulation models, GCMs). This ensemble of projections was combined using consensus methods to create a map of stable climate (refugial habitat) since the Last Interglacial (124,000 years before present). Four biogeographic hypotheses were developed based on the configuration of refugial habitat and were tested using a statistical phylogeographic approach. Statistical phylogeography evaluates the probability of alternative models of population history given uncertainty about past population parameters, such as effective population sizes and the timing of divergence events. The multiple-refugia hypothesis was supported by both methods, validating the assumption of niche conservatism in R. integrifolia, and justifying the projection of SDMs onto future climates. SDMs were projected onto two greenhouse gas scenarios (A1B and A2) for 2085 using climate data downscaled from five GCMs. Ensemble and consensus methods were used to illustrate variability across these GCMs. Projections at 2085 showed substantial losses of climatically suitable habitat for R. integrifolia across its range. Southern populations had the greatest losses, though the biogeographic scale of modeling may overpredict extinction risks in areas of topographic complexity. Finally, past and future SDM projections were assessed for novel values of climate variables; projections in areas of novel climate were flagged as having higher uncertainty. Integrating molecular approaches with spatial analyses of species distributions under global change has great potential to improve conservation decision-making. Molecular tools can support and improve current methods for understanding species vulnerability to climate change, and provide additional data upon which to base conservation decisions, such as prioritizing the conservation of areas of high genetic diversity in order to build evolutionary resiliency within populations

    Integrating Environmental, Molecular, and Morphological Data to Unravel an Ice-age Radiation of Arctic-alpine Campanula in Western North America

    Get PDF
    Many arctic-alpine plant genera have undergone speciation during the Quaternary. The bases for these radiations have been ascribed to geographic isolation,abiotic and biotic differences between populations, and/or hybridization andpolyploidization. The Cordilleran Campanula L. (Campanulaceae Juss.), a monophyletic clade of mostly endemic arctic-alpine taxa from western North America, experienced a recent and rapid radiation. We set out to unravel the factors that likely influenced speciation in this group. To do so, we integrated environmental, genetic, and morphological datasets, tested biogeographic hypotheses, and analyzed the potential consequences of the various factors on the evolutionary history of the clade. We created paleodistribution models to identify potential Pleistocene refugia for the clade and estimated niche space for individual taxa using geographic and climatic data. Using 11 nuclear loci, we reconstructed a species tree and tested biogeographic hypotheses derived from the paleodistribution models. Finally, we tested 28 morphological characters, including floral, vegetative, and seed characteristics, for their capacity to differ- entiate taxa. Our results show that the combined effect of Quaternary climatic variation, isolation among differing environments in the mountains in western North America, and biotic factors influencing floral morphology contributed to speciation in this group during the mid-Pleistocene. Furthermore, our biogeographic analyses uncovered asynchronous consequences of interglacial and glacial periods for the timing of refugial isolation within the southern and northwestern mountains, respectively. These findings have broad implications for understanding the processes promoting speciation in arctic-alpine plants and the rise of numerous endemic taxa across the region

    Deep Genetic Divergence Between Disjunct Refugia in the Arctic-Alpine King\u27s Crown, Rhodiola integrifolia (Crassulaceae)

    Get PDF
    Despite the strength of climatic variability at high latitudes and upper elevations, we still do not fully understand how plants in North America that are distributed between Arctic and alpine areas responded to the environmental changes of the Quaternary. To address this question, we set out to resolve the evolutionary history of the King’s Crown, Rhodiola integrifolia using multi-locus population genetic and phylogenetic analyses in combination with ecological niche modeling. Our population genetic analyses of multiple anonymous nuclear loci revealed two major clades within R. integrifolia that diverged from each other ~ 700 kya: one occurring in Beringia to the north (including members of subspecies leedyi and part of subspecies integrifolia), and the other restricted to the Southern Rocky Mountain refugium in the south (including individuals of subspecies neomexicana and part of subspecies integrifolia). Ecological niche models corroborate our hypothesized locations of refugial areas inferred from our phylogeographic analyses and revealed some environmental differences between the regions inhabited by its two subclades. Our study underscores the role of geographic isolation in promoting genetic divergence and the evolution of endemic subspecies in R. integrifolia. Furthermore, our phylogenetic analyses of the plastid spacer region trnL-F demonstrate that among the native North American species, R. integrifolia and R. rhodantha are more closely related to one another than either is to R. rosea. An understanding of these historic processes lies at the heart of making informed management decisions regarding this and other Arctic-alpine species of concern in this increasingly threatened biome

    An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon

    Get PDF
    Industrial-scale oil palm cultivation is rapidly expanding in Gabon, where it has the potential to drive economic growth, but also threatens forest, biodiversity and carbon resources. The Gabonese government is promoting an ambitious agricultural expansion strategy, while simultaneously committing to minimize negative environmental impacts of oil palm agriculture. This study estimates the extent and location of suitable land for oil palm cultivation in Gabon, based on an analysis of recent trends in plantation permitting. We use the resulting suitability map to evaluate two proposed approaches to minimizing negative environmental impacts: a High Carbon Stock (HCS) approach, which emphasizes forest protection and climate change mitigation, and a High Conservation Value (HCV) approach, which focuses on safeguarding biodiversity and ecosystems. We quantify the forest area, carbon stock, and biodiversity resources protected under each approach, using newly developed maps of priority species distributions and forest biomass for Gabon. We find 2.7–3.9 Mha of suitable or moderately suitable land that avoid HCS areas, 4.4 million hectares (Mha) that avoid HCV areas, and 1.2–1.7 Mha that avoid both. This suggests that Gabon's oil palm production target could likely be met without compromising important ecosystem services, if appropriate safeguards are put in place. Our analysis improves understanding of suitability for oil palm in Gabon, determines how conservation strategies align with national targets for oil palm production, and informs national land use planning

    Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations

    Get PDF
    Uncovering the genetic basis of adaptation hinges on the ability to detect loci under selection. However, population genomics outlier approaches to detect selected loci may be inappropriate for clinal populations or those with unclear population structure because they require that individuals be clustered into populations. An alternate approach, landscape genomics, uses individual-based approaches to detect loci under selection and reveal potential environmental drivers of selection. We tested four landscape genomics methods on a simulated clinal population to determine their effectiveness at identifying a locus under varying selection strengths along an environmental gradient. We found all methods produced very low type I error rates across all selection strengths, but elevated type II error rates under ‘weak’ selection. We then applied these methods to an AFLP genome scan of an alpine plant, Campanula barbata, and identified five highly supported candidate loci associated with precipitation variables. These loci also showed spatial autocorrelation and cline patterns indicative of selection along a precipitation gradient. Our results suggest that landscape genomics in combination with other spatial analyses provides a powerful approach for identifying loci potentially under selection and explaining spatially complex interactions between species and their environment

    High performance computation of landscape genomic models including local indicators of spatial association

    Get PDF
    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics — i.e. the combination of landscape ecology with population genomics — include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present Samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental datasets. Samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models in order to lower the occurrences of spurious genotype-environment associations. In addition, Samβada calculates Local Indicators of Spatial Association (LISA) for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a dataset from Ugandan cattle to detect signatures of local adaptation with Samβada, BayEnv, LFMM and an FST outlier method (FDIST approach in Arlequin) and compare their results. Samβada — an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada — outperforms other approaches and better suits whole genome sequence data processing

    Data from: Spatial detection of outlier loci with Moran eigenvector maps (MEM)

    No full text
    The spatial signature of microevolutionary processes structuring genetic variation may play an important role in the detection of loci under selection. However, the spatial location of samples has not yet been used to quantify this. Here, we present a new two-step method of spatial outlier detection at the individual and deme levels using the power spectrum of Moran eigenvector maps (MEM). The MEM power spectrum quantifies how the variation in a variable, such as the frequency of an allele at a SNP locus, is distributed across a range of spatial scales defined by MEM spatial eigenvectors. The first step (Moran spectral outlier detection: MSOD) uses genetic and spatial information to identify outlier loci by their unusual power spectrum. The second step uses Moran spectral randomization (MSR) to test the association between outlier loci and environmental predictors, accounting for spatial autocorrelation. Using simulated data from two published papers, we tested this two-step method in different scenarios of landscape configuration, selection strength, dispersal capacity and sampling design. Under scenarios that included spatial structure, MSOD alone was sufficient to detect outlier loci at the individual and deme levels without the need for incorporating environmental predictors. Follow-up with MSR generally reduced (already low) false-positive rates, though in some cases led to a reduction in power. The results were surprisingly robust to differences in sample size and sampling design. Our method represents a new tool for detecting potential loci under selection with individual-based and population-based sampling by leveraging spatial information that has hitherto been neglected

    R scripts

    No full text
    R scripts for analyzing both sets of simulations (individual and deme level), and additional spatial coordinate files for Lotterhos & Whitlock (2015) data at http://dx.doi.org/10.5061/dryad.mh67

    Data from: Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes

    No full text
    The spatial structure of the environment (e.g., the configuration of habitat patches) may play an important role in determining the strength of local adaptation. However, previous studies of habitat heterogeneity and local adaptation have largely been limited to simple landscapes, which poorly represent the multi-scale habitat structure common in nature. Here, we use simulations to pursue two goals: (1) we explore how landscape heterogeneity, dispersal ability, and selection affect the strength of local adaptation, and (2) we evaluate the performance of several genotype-environment association (GEA) methods for detecting loci involved in local adaptation. We found that the strength of local adaptation increased in spatially aggregated selection regimes, but remained strong in patchy landscapes when selection was moderate to strong. Weak selection resulted in weak local adaptation that was relatively unaffected by landscape heterogeneity. In general, the power of detection methods closely reflected levels of local adaptation. False positive rates (FPRs), however, showed distinct differences across GEA methods based on levels of population structure. The univariate GEA approach had high FPRs (up to 55%) under limited dispersal scenarios, due to strong isolation by distance. By contrast, multivariate, ordination-based methods had uniformly low FPRs (0-2%), suggesting these approaches can effectively control for population structure. Specifically, constrained ordinations had the best balance of high detection and low FPRs, and will be a useful addition to the GEA toolkit. Our results provide both theoretical and practical insights into the conditions that shape local adaptation and how these conditions impact our ability to detect selection
    corecore